

Rick Sturm

BNMS: Genetic association of naevi morphology and melanoma

Study Populations available to the CRE

BERNS = Brisbane Electoral Roll Naevus Study, CRE core study n=150

BTNS = Brisbane Twin Naevus Study; n>3,000 (QIMR-B controls 23,724 individuals unaffected by CMM)

BNMS= Brisbane Naevus Morphology Study, n=1,200

BMPMNS = Brisbane Multiple Primary Melanoma Naevus Study, n=100

BAMNS = Brisbane Advanced Melanoma Naevus Study n=80

BLTNS = Brisbane Lung Transplant Naevus Study n=90

Nambour trial = Trial of Sunscreen for Melanoma Prevention n= 1,626

MST = QSkin Melanoma Screening Trial n>60,000

What are naevi and how do they arise?

Effect of naevogenesis susceptibility genes and phenotypic correlation with dermoscopic characteristics of naevi

HYPOTHESES:

- MC1R variant alleles will have a major influence on innate melanocytic naevus morphology
- Variation in other pigmentation genes such as TYR, which are modifiers of melanoma risk, may influence melanocytic naevus colour and morphology
- Genes that have recently been recognised to influence naevus count including IRF4, MTAP and PLA2G6 may also influence naevus morphology
- Genes that regulate melanocytic cell function such as MITF will also act to modify naevus count and/or morphology

Brisbane Naevus Morphology Study (BNMS) 2011 to 2016

AIM

600 CMM cases or Family History vs
600 control subjects

N = 1200

Interim analysis of survey at 3 years

256 control subjects

Total Dec 2013 with phenotype + genotype N = 572

QLD

Recruited as of April 2016 N > 1100

Naevi classified by size, profile, colour and dermoscopic naevus pattern

13,587 melanocytic naevi >5mm

Globular 15.6%

Reticular 21.9%

Homogeneous/ Nonspecific 62.5%

Total body naevus count by body-site and sex

Female vs Male

Collection of saliva for genetic analysis

Assess pigmentation using Spectrophotometer

Assess freckling density on face, hand & shoulders

Documentation of patient demographics, sun exposure background, personal and family skin cancer / naevi history, medications

Photographic documentation of eye colour

Phenotypic Characteristics of BNMS

Naevus count vs Sex

Skin Reflectance vs Sex

Freckling score vs Melanoma

Skin Reflectance vs Melanoma

Naevus Count vs Melanoma

Sanger Sequencing

Genotyping platforms

MC1R Genotyping

Whole Exome Sequencing (WES)

MC1R R160W -/chr16:89986144 C>T

Sequenom and Taqman based **SNP Genotyping**

Gen	rs	Chr	Nucleotide Change		Protein Change
SLC45A2	rs16891982	5	c.1122 G>C	TTC>TTG	p.Phe374Leu
HERC2	rs12913832	15	c.13272+874T>C	1.5	-
SLC24A5	rs1426654	15	c.331A>G	ACA>GAC	p.Thr111Ala
IRF4	rs12203592	6	c.492+386 C>T	-	-
OPN/SPP1	rs11730582	4	g.88896421T>C	-	-
OGG1	rs1052133	3	c.977C>G	TCC>TGC	p.Ser326Cys
GSTP1	rs1695	11	c.313A>G	ATC>GTC	p.lle105Val
MITF	rs149617956	3	c.952G>A	GAA>AAA	p.Glu318Lys
TYR	rs1042602	11	c.575C>A	TCT>TAT	p.Ser192Tyr
TYR	rs1126809	11	c.1205G>A	CGA>CAA	p.Arg402Gln

Illumina CoreExome 500,000 SNPs

The HumanCoreExome-24 BeadChip enables informative genotyping of tag SNP and exome-focused markers across diverse world populations, delivering high-quality data that can be used in various downstream applications.

Candidate genes and SNPs associated with CMM in BNMS

Rs/loc	chi	r ps	p-value	-log10(p)	gene name
rs11570734	22	38.518622	0.0003	3.541	PLA2G6
mc1r	16	21.800000	0.0006	3.222	R,r,w
rs4820314	22	38.518538	0.0007	3.175	PLA2G6
rs7023954	9	21.816758	0.0018	2.743	MTAP V56I
mc1r_R163Q	16	89.986154	0.0036	2.449	MC1R R163Q
rs7023329	9	21.816528	0.0048	2.319	MTAP

CDKN2A carriers identified by Whole Exome Sequence (WES) Analysis

Arch Dermatol Res DOI 10.1007/s00403-015-1582-y

CONCISE COMMUNICATION

High incidence of primary melanomas in an MC1R RHC homozygote/CDKN2A mutant genotype patient

Sudipta Sinnya 1,3 · Kasturee Jagirdar 1 · Brian De'Ambrosis 1,2,3 · Erin McMeniman 1,3 · Richard A. Sturm 1 · H. Peter Sover 1,3